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Abstract—Performance microbenchmarking is essential for en-
suring software quality by providing granular insights into code
efficiency. While automated performance microbenchmark gen-
eration tools (e.g., ju2jmh) are proposed to alleviate practitioners
from manually curating microbenchmarks, the high volume of
generated benchmarks can lead to protracted benchmarking
execution time, as many of the generated benchmarks are too
short in nature to be valuable for evaluating performance.
In this paper, we present a novel approach that optimizes
microbenchmark execution through a batching strategy, i.e.,
grouping benchmarks with similar code coverage and treating
them as a single unit to 1) reduce execution overhead and 2)
reduce the bias from microbenchmarks that are too short. We
evaluate the effectiveness of this enhancement across various Java
projects, comparing the execution times of clustered and indi-
vidual microbenchmarks. Our findings demonstrate substantial
improvements in execution efficiency, reducing execution time by
up to 89.81% while preserving high microbenchmark stability.

Index Terms—Software Performance, Performance Testing,
Performance Microbenchmarking

I. INTRODUCTION

In today’s fast-paced digital world, where responsiveness
and efficiency are paramount, ensuring optimal application
performance is no longer a luxury but a necessity. Performance
microbenchmarks are widely used to measure a software’s
performance at a granular level. However, due to their high
granularity, the benchmarks are often short, leading to high
overhead relative to their runtime. Especially in large projects,
the sheer volume of microbenchmarks can create execution
bottlenecks, delaying development cycles and increasing costs.
These challenges are observed across many organizations and
software projects, where lengthy performance test suites are a
known issue [1].

Existing work has made a significant effort to ease the
developers’ workload in creating performance microbench-
marks, such as ju2jmh [2], which can automatically generate
microbenchmarks from JUnit test suites. The introduction
of ju2jmh fosters microbenchmarking in Java applications
by incorporating the Java Microbenchmark Harness (JMH),
which provides features to create and run performance mi-
crobenchmarks and enables developers to accurately measure
the execution time of small units of code [3]–[5]. Creating
and maintaining JMH benchmarks can be time-consuming and
requires a deep understanding of both the system under test
and the nuances of the JVM [6]. ju2jmh [2] mitigates this

issue, but from effective test creation to execution, developers
still need a robust solution to streamline the process.

To address this gap, we propose a batch execution-based
strategy to enhance the efficiency of performance microbench-
marking. Our approach clusters benchmarks with similar code
coverage to make batch execution feasible. This not only
reduces execution overhead but also mitigates the inefficiency
caused by excessively short benchmarks. Additionally, clus-
tering benchmarks may provide deeper insights by exposing
interactions among related code components that individual
benchmarks could miss. Through this optimization, we aim
to make performance testing faster, more reliable, and more
accessible, enabling developers to integrate it seamlessly into
their workflows.

To evaluate the effectiveness of our proposed approach,
we compare it with individual benchmark execution across
three large open-source projects: RxJava, Eclipse-collections
and ZipKin. Our preliminary results show that batch execution
could indeed reduce benchmarks’ execution time, with sav-
ings ranging from 80.33% to 89.81%. While achieving high
efficiency, batch execution does not significantly reduce the
benchmark’s stability, with only a slightly lower number of
stable benchmarks compared to individual execution. This in-
dicates that batch-executed microbenchmarks yield consistent
results across repeated runs, thereby ensuring the reliability
and robustness of performance evaluation. Our preliminary
results demonstrate the promising feasibility of batch execu-
tion for microbenchmarks for efficient performance testing and
could inspire developers to adopt batch execution to facilitate
performance testing in real-world scenarios.

II. STUDY OVERVIEW

This section provides an overview of our study for batching
microbenchmarks.

Figure 1 illustrates the overall workflow of our method-
ology. The process begins with preparing the microbench-
marking environment and providing microbenchmarks ready
for batch execution from existing JMH microbenchmarks and
conversions of JUnit test suites, with the latter implemented
by ju2jmh.

The implementation of batch execution for microbench-
marks is based on the functional similarity identified between
hand-crafted JMH microbenchmarks and those generated by
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Fig. 1. Overview of our study methodology.

ju2jmh. Similar ju2jmh microbenchmarks are grouped into
clusters, which are subsequently treated as a single, indivisible
composite microbenchmark for performance testing.

A. Motivation

Performance testing is essential for identifying bottlenecks
and optimizing software systems but often remains time-
consuming and resource-intensive. Large performance test
suites, common in industry projects, involve executing numer-
ous microbenchmarks individually. While small microbench-
marks are precise and efficient for evaluating targeted func-
tionality, their limited scope often fails to detect broader
performance trends or anomalies [2]. Additionally, running
small, isolated microbenchmarks incurs inefficiencies due to
repeated overhead from initialization, execution, and result
analysis. This repetitive processing consumes significant re-
sources, making the testing process impractical, especially for
large-scale microbenchmarking suites.

Existing tools like ju2jmh reduce developers’ effort in
generating microbenchmarks but do not address these ineffi-
ciencies or the broader limitations of small microbenchmarks.
Our research proposes enhancing ju2jmh microbenchmarking
efficiency by batching functionally similar microbenchmarks
into clusters for performance testing. This clustering approach
offers several benefits:

• Broader Analysis: Enhances the collective utility of mi-
crobenchmarks, enabling them to contribute to identifying
broader performance trends.

• Efficiency Gains: Reduces redundant overhead, optimiz-
ing the use of computational and testing resources.

• Improved Scalability: Makes the performance testing
process more practical and scalable, particularly for large-
scale projects.

Leveraging batch execution for microbenchmarks can sig-
nificantly enhance the efficiency of the execution process.
Moreover, since batch execution does not directly alter the
microbenchmarks, this approach minimizes the risks associ-
ated with improving test execution efficiency, which makes
it possible to enhance microbenchmarking efficiency while
maintaining the original accuracy. Ultimately, our goal is
to streamline performance testing workflows, enabling faster
feedback loops, reduced computational burdens, and more
accessible performance testing for developers.

B. Batch Execution Construction

To enable batch-executing microbenchmarks, we leverage
code coverage information to cluster functional similar mi-
crobenchmarks. Code coverage measures how different mi-
crobenchmarks exercise overlapping code regions. It is com-
monly used as an indicator of functional similarity in prior
studies for test selection and reduction [7]–[9]. The JaCoCo
agent [10], a library for calculating code coverage in Java

projects, is employed to measure the percentage of overlapping
covered code lines. The similarity score ranges from 0% (no
overlap) to 100% (complete overlap where the smaller test’s
coverage is a subset of the larger one). While a 100% similarity
score reflects substantial alignment in covered code segments,
it does not necessarily imply identical functionality. Instead, it
indicates a shared scope that allows for meaningful grouping
of related benchmarks. This nuanced understanding of cover-
age ensures that clusters are cohesive and functionally relevant.
Furthermore, batch execution of microbenchmarks maintains
the same code coverage as individual runs, preserving the
collective coverage achieved by each microbenchmark within
the cluster.

C. Methodology for Batch Execution

Algorithm 1 illustrates our methodology for batch execution
of microbenchmarks. It consists of two steps: 1) The first step
involves ranking the most similar ju2jmh microbenchmarks
for each hand-crafted JMH microbenchmark based on code
coverage similarly. The more similar a microbenchmark is, the
higher the chance it will be clustered into the same cluster. 2)
For each hand-crafted JMH microbenchmark, we group the
top-K most similar ju2jmh microbenchmarks to enable batch
execution. The value of K is determined by incrementally
summing the sizes of individual microbenchmarks until their
combined execution time reaches an empirically observed
threshold sufficient for detecting performance bugs (i.e., 5
µs) [2].

Algorithm 1 Benchmark Batching
1: Input: Handcrafted JMH Microbenchmarks, ju2jmh Mi-

crobenchmarks, Cluster Size K
2: Output: Clusters of Microbenchmarks
3: // Similarity Scoring
4: for each JMH Handcrafted Microbenchmarks do
5: for each ju2jmh Microbenchmarks do
6: Compute and store similarity(JMH, ju2jmh)
7: end for
8: Rank ju2jmh by similarity for JMH
9: end for

10: // Cluster Formation
11: for each JMH Hand-crafted Microbenchmarks do
12: Create cluster;
13: Add top ju2jmh until size(cluster)=K
14: If size(cluster) ≤ K then Continue
15: Add cluster to clusters
16: end for
17: Return: Clusters

III. EVALUATION SETUP

In this section, we evaluate our proposed batch execution
strategy by comparing it with individually executed ones in
terms of microbenchmarking efficiency and stability.

A. Approach

The following two metrics are used to evaluate the efficiency
and stability of the batch execution strategy.
Microbenchmarking Execution Time: This metric is used
to measure the efficiency of microbenchmarking for batch
execution. By using individually executed microbenchmarks



as a baseline for comparison, we can examine how batch
execution speeds up microbenchmarking.
Microbenchmarking Stability: To determine the reliabil-
ity and consistency of the microbenchmarks in detecting
performance-related issues, we assess the stability in mi-
crobenchmarking results across multiple executions of both in-
dividual and batch-executed microbenchmarks. Stability serves
a critical metric that helps developers observe whether a
program behaves consistently under performance testing and
is useful for real-world performance testing enhancement. We
analyze the stability of microbenchmarks using the Relative
Standard Deviation (RSD) of their execution time, where a
lower RSD value indicates higher stability and vice versa.
For each benchmark and cluster, we calculate RSD across 30
iterations and measure its stability. In particular,

• A ≤1% RSD indicates a stable result where clustering
retains accuracy.

• A >5% RSD suggests an unstable result where clustering
may compromise accuracy [2].

• For RSD between 1% and 5%, we evaluated whether
the cluster’s RSD was lower than most individual bench-
marks in that cluster to assess sufficiency.

B. Study Subjects
In this section, we introduce the three study subjects in-

volved in this study. We experimented our clustering strat-
egy deployed on ju2jmh microbenchmarks, on three open-
source Java projects, Rxjava, Eclipse-collections,
and Zipkin, which have readily available JUnit test cases
and JMH microbenchmarks. The selected three open-source
projects are widely recognized, well-maintained, and exten-
sively studied in prior studies on performance microbench-
marking [2], [11]–[16].

Table I provides detailed information about our study sub-
jects: the studied version (column Version, i.e., the latest ver-
sion at the commencement of this study), extracted metadata
from Github including the numbers of stars (column Stars)
and the number of contributors (column Contr.), the number
of the source lines of code (column SLOC), the total number
of JMH benchmarks (column #JMH) and selected JUnit test
cases (column #JUnit).

TABLE I
OVERVIEW OF THE STUDY SUBJECTS.

Version Stars Contr. SLOC #JMH #JUnit

RxJava 3 44.7K 277 311,975 1,217 9,825
Eclipse-collections 10.4.0 1.7K 88 135,017 986 24,758
ZipKin 2.7 14.4K 145 7,467 59 501

Total 60.8K 510 454,459 2,262 35,084

C. Experiment Settings
We select 14,117 out of 35,084 ju2jmh microbenchmarks

with execution time below 2µs, as these microbenchmarks tend
to have limited utility, due to their high variance and limited
scope [2] that can benefit from batch execution. The 14,117
ju2jmh microbenchmarks are grouped into 1,723 clusters.
Each cluster is represented as a JMH microbenchmark that
sequentially invokes the individual microbenchmarks within
its payload.

D. Execution environment

To perform the microbenchmarking procedure, we took
advantage of cloud computing resources to simulate a real-
world environment. To have a consistent measurement process,
for all the experiments in this study, we deployed t2.xlarge
(4 vCPUs, 16 GB memory) instances provided by Amazon
Web Services1. Instances are run on Amazon Linux 2023 and
OpenJDK 1.8. In total, our experiment consists of 15,840
measurements, each containing 30 data points measured, i.e.,
each data point is the throughput of one JMH microbenchmark
case (annotated by @benchmark in testing code) measured in
one second. The experiments in this study took approximately
264 machine hours to complete.

IV. PRELIMINARY EVALUATION RESULTS

To evaluate our proposed batch-executed strategy, our pre-
liminary evaluation compares the efficiency and stability be-
tween individually and batch-executed microbenchmarks.
A. Execution Time Savings

Table II highlights the efficiency of the batch execution
strategy across the study subjects. The results demonstrate
significant reductions in execution time, with savings ranging
from 80.33% to 89.81%.
Scalability: The clustering approach effectively groups bench-
marks, with cluster sizes averaging 5 to 10 benchmarks. Larger
projects like Eclipse-collections see the highest percentage of
time saved (89.81%) due to greater opportunities for redun-
dancy reduction.
Impact: The observations from Table II indicate the signif-
icant efficiency improvement for microbenchmarks brought
by batch execution. Since batch execution does not involve
code changes, this strategy will not affect code coverage,
which minimizes the risks of reducing test reliability. The
batch-executed strategy scales well across projects of different
sizes, ensuring faster feedback loops and reduced costs in
performance testing workflows.

TABLE II
TIME SAVED USING BATCH-EXECUTED STRATEGY

RxJava Eclipse-collections ZipKin

# of ju2jmh benchmarks 2,896 11,109 112
# of clusters 570 1,132 21
Avg. size of clusters 5.08 9.81 5.42
Total time for individuals (hours) 48.3 185.15 1.86
Total time for clusters (hours) 9.50 18.87 0.35
% of time saved (%) 80.33 89.81 81.20

B. Benchmarks’ Stability

Table III evaluates the stability of clustered and individual
benchmarks by comparing the Relative Standard Deviation
(RSD) of their execution time and the percentages of stable
(≤1% RSD) and unstable (≥5% RSD) benchmarks across the
study subjects.
RSD Comparison: The average RSD for clusters, across three
study subjects, is comparable to individual benchmarks (e.g.,

1https://aws.amazon.com/

https://github.com/ReactiveX/RxJava
https://github.com/eclipse/eclipse-collections
https://github.com/openzipkin/zipkin
https://aws.amazon.com/


0.51% vs. 0.51% for RxJava and 0.35% vs. 0.75% for Eclipse-
collections), with a maximum increment of 0.20%, reflecting
the slightly better stability from batching microbenchmarks.
Stability: The percentage of stable benchmarks is consis-
tently high for clusters (91.8%-100%) and slightly better
than individual benchmarks in Eclipse-collections and Zipkin.
Unstable benchmarks remain rare for both clusters (≤0.79%)
and individuals (≤0.89%).
Impact: These results show that batch execution retains suf-
ficient stability. This ensures that clustering does not compro-
mise the ability to detect performance regressions effectively.

TABLE III
RSD OF CLUSTERS AND INDIVIDUALS, THE PERCENTAGE OF STABLE

(≤1%) AND UNSTABLE (≥5%) MICROBENCHMARKS

RxJava Eclipse-collections ZipKin

Average RSD of individuals (%) 0.51 0.75 0.50
Average RSD of clusters (%) 0.51 0.35 0.70
RSD difference 0.00 -0.40 0.20

Stable individuals (%) 95.9 79.8 97.3
Stable clusters (%) 91.8 97.8 100.0
Stability difference (%) -4.1 18.0 2.7

Unstable individuals (%) 0.38 0.03 0.89
Unstable clusters (%) 0.00 0.79 0.00
Instability difference (%) -0.38 0.76 -0.89

To conclude, the results demonstrate that the proposed batch
execution strategy significantly improves the efficiency of per-
formance microbenchmarking. Table II highlights substantial
time savings, with batch execution reducing execution times by
over 80% across all three Java projects, making performance
testing more scalable and cost-effective. Table III confirms
that batch execution maintains sufficient stability, with the
variability (measured as RSD) remaining negligible. The
batch-executed microbenchmarks exhibit overall high stability.
Therefore, these results indicate that batch execution achieves
significant reductions in execution time without compromising
the stability needed for effective performance testing, offering
a practical solution to streamline performance test suites in
diverse software projects.

V. THREATS TO VALIDITY

In this paper, we leverage the code coverage as an indicator
to cluster functionally similar microbenchmarks. While other
methods such as static code analysis, dynamic call graphs,
or semantic code embeddings could be used for similarity
measurement, such approaches usually require complex code
analysis frameworks or face challenges of dynamic language
features. Therefore, we choose this lightweight yet effective
approach to capture code with similar execution paths without
deep analysis overhead while maintaining a high correlation
with performance characteristics. When estimating execution
time savings, we exclude the time to compute benchmark
batching, which takes an average of 13.7 to 48.3 seconds per
cluster in our study subjects, as this calculation is performed
once and can be reused in subsequence executions.

VI. RELATED WORK

Benchmarking, especially microbenchmarking, requires sig-
nificant computational resources to run and generate re-

sults [17]. Running benchmarks sequentially on limited re-
sources increases overall execution time [17]. Redundant and
ineffective microbenchmarks are an additional concern. Laaber
and Leitner [12] pointed out the prevalence of benchmarks
with limited or overlapping coverage, which contribute little
value to performance testing processes.

Enhancing the efficiency of performance testing has been
explored through various methodologies and case studies [2],
[12], [13], [15], [18]. Laaber et al. [13] developed methods
to dynamically halt microbenchmark executions once result
stability is achieved, thereby reducing execution time without
sacrificing result quality. Techniques like prioritizing perfor-
mance regression tests based on risk analysis have also been
explored by Huang et al. [19] demonstrating the effectiveness
of targeted testing in reducing unnecessary test executions.
Automated solutions, such as those proposed by AlGhamdi
et al. [20], have further streamlined performance testing by
introducing stopping criteria based on result stability.

The concept of enhancing the efficiency and effectiveness
of performance microbenchmarks through batch execution
is inspired by studies that have successfully implemented
batch execution strategies for testing. Fallahzadeh et al. [21]
introduced techniques for test batching and parallel execution
in continuous integration systems, emphasizing the impact of
resource allocation and feedback time on execution efficiency.
Similarly, AlGhamdi et al. [22] explored reducing execution
time in performance testing by grouping related test cases
into clusters and executing them in parallel, ensuring effective
resource utilization without compromising test quality [23].

Despite various advancements in performance testing, the
application of batch execution to optimize microbenchmarking
remains underexplored. Our study fills this gap by proposing
a tailored batch execution strategy for microbenchmarks, the
preliminary results demonstrate improved efficiency in mi-
crobenchmark execution.

VII. CONCLUSION AND FUTURE PLANS

Performance microbenchmarking benefits from automated
microbenchmark generation but still faces challenges with long
execution time, especially for large-scale software systems or
extensive test suites. Our study proposes a batch-executed
strategy to improve performance testing efficiency based on
microbenchmarks’ functional similarity. The evaluation of
three subject projects indicates that batch execution largely
reduces the execution time (80.33% to 89.81%) without com-
promising the benchmark’s stability. In the future, we plan to
investigate the effectiveness of the batch execution approach
in detecting performance bugs, and explore the characteristics
of the batch-executed benchmarks that may enhance their
performance bug identification capability. Our future research
shall provide practitioners with insights and guidelines for
optimizing their performance testing strategies, potentially
leading to more robust software systems.
Data Availability: The data and scripts used in this study
are publicly available at https://github.com/senseuwaterloo/
Batch-execution-ju2jmh-benchmarks.

https://github.com/senseuwaterloo/Batch-execution-ju2jmh-benchmarks
https://github.com/senseuwaterloo/Batch-execution-ju2jmh-benchmarks
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